THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX
نویسندگان
چکیده
منابع مشابه
The Generalized Pascal Matrix via the Generalized Fibonacci Matrix and the Generalized Pell Matrix
In [4], the authors studied the Pascal matrix and the Stirling matrices of the first kind and the second kind via the Fibonacci matrix. In this paper, we consider generalizations of Pascal matrix, Fibonacci matrix and Pell matrix. And, by using Riordan method, we have factorizations of them. We, also, consider some combinatorial identities.
متن کاملThe generalized order-k Fibonacci–Pell sequence by matrix methods
In this paper, we consider the usual and generalized order-k Fibonacci and Pell recurrences, thenwe define a new recurrence, which we call generalized order-k F–P sequence. Also we present a systematic investigation of the generalized order-k F–P sequence. We give the generalized Binet formula, some identities and an explicit formula for sums of the generalized order-k F–P sequence by matrix me...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملThe generalized Fibonomial matrix
The Fibonomial coe¢ cients are known as interesting generalization of binomial coe¢ cients. In this paper, we derive a (k + 1)th recurrence relation and generating matrix for the Fibonomial coe¢ cients, which we call generalized Fibonomial matrix. We nd a nice relationship between the eigenvalues of the Fibonomial matrix and the generalized right-adjusted Pascal matrix that they have the same ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2008
ISSN: 0304-9914
DOI: 10.4134/jkms.2008.45.2.479